Lineare Gleichungssysteme (drei Unbekannte) mit Parameter Übung

1. Bestimmen Sie a $\in \mathbb{R}$ so, dass das Gleichungssystem unlösbar ist. •••

I)
$$2x_1 - x_2 + x_3 = 3$$

i)
$$2x_1 - x_2 + x_3 = 3$$
 i) $x_1 + 2x_2 - x_3 = 2$ a) ii) $x_1 + x_2 + 2x_3 = 1$ b) ii) $ax_2 + 2x_3 = 2$ iii) $2x_1 - 2x_2 + ax_3 = 5$ iii) $2x_1 + 4x_2 + x_3 = 1$

III)
$$3x_1 - 2x_2 + ax_3 = 5$$

I)
$$x_1 + 2x_2 - x_3 = 2$$

b) II)
$$ax_2 +2x_3 = 2$$

III)
$$2x_1 + 4x_2 + x_3 = 1$$

2. Ermitteln Sie den Parameter $b \in \mathbb{R}$ so, dass das Gleichungssystem unendlich viele Lösungen besitzt. •••

a) II)
$$2x_1 + x_2 + 2x_3 = 1$$

III) $2x_1 + bx_2 = -2$

I)
$$3x_1 + 2x_2 =$$

I)
$$x_1 + x_2 + 2x_3 = 2$$
 I) $3x_1 + 2x_2 = 1$ a) II) $2x_1 + x_2 + 2x_3 = 1$ b) II) $6x_1 + 2x_2 + (b+3)x_3 = -2$ III) $-x_1 + x_2 = 3$

3. Durch folgende Matrizen sind Gleichungssysteme dargestellt. Geben Sie die Anzahl der Lösungen in Abhängigkeit vom Parameter $c \in \mathbb{R}$ an. •••

a)
$$\begin{pmatrix} 5 & 0 & 0 & 10 \\ 0 & c & 0 & 0 \\ 0 & 0 & 3 & 6 \end{pmatrix}$$

b)
$$\begin{pmatrix} 3 & 0 & 0 & 6 \\ 0 & 4 & 4 & 2 \\ 0 & 0 & 0 & c + 5 \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & c^2 - 4 & c - 2 \end{pmatrix}$$

4. Lösen Sie die folgenden linearen Gleichungssysteme in Abhängigkeit von a $\in \mathbb{R}$. •••

a) I)
$$x +2y = 2$$

II) $ay = 0$

b) I)
$$ax -y = 2$$

II) $-3x +3y = -5$

I)
$$-x_1$$
 $+3x_3$ = 2 I) $2x_1 + x_2$ = 1 + 2a c) II) $+2x_2 + x_3$ = 2 d) II) $2x_1 + 3x_2 + 3x_3$ = 2 - 3a III) $2x_1 + 3x_2 + 2x_3$ = 3

II)
$$+2x_2 +x_3 = 2$$

III) $+(a-4)x_3 = 0$

I)
$$2x_1 + x_2 = 1 + 2a$$

II)
$$2x_1 + 3x_2 + 3x_3 = 2 - 3a$$

I)
$$2x_1 - 4x_2 + x_3 = 3$$

I)
$$2x_1 - 4x_2 + x_3 = 3$$

e) II) $x_1 + 2x_2 + 2x_3 = 1$

III)
$$3x_1 -2x_2 +ax_3 = 5$$

I)
$$x_1 + 2x_2 + x_3 = a$$

I)
$$x_1 + 2x_2 + x_3 = a$$

f) II) $2x_1 + 6x_2 + 5x_3 = 4$

III)
$$x_1 + 6x_2 + 7x_3 = 2a - 2$$

5. Bestimmen sie die Werte des Parameters $a \in \mathbb{R}$, für die das folgende Gleichungssystem keine, eine bzw. unendlich viele Lösungen besitzt. •••

$$2x_1 -ax_2 +2x_3 = 2$$

 $-x_1 +x_2 +(a-1)x_3 = 2$

$$x_1 -3x_2 +x_3 = 1$$

Lineare Gleichungssysteme (drei Unbekannte) mit Parameter Lösung

1.

- a) Das Gleichungssystem ist unlösbar für a = 1.
- b) System unlösbar für a = 0.

2.

- a) Für b = 0 existieren unendlich viele Lösungen.
- b) Für b = -3 existieren unendlich viele Lösungen.

3.

- a) Für c = 0 existieren unendlich viele Lösungen, für $c \neq 0$ eine Lösung. [Hinweis: Die Lösungsmenge $L = \{(2, 0, 2)\}$ ist für diesen Fall nicht verlangt]
- b) c = -5: Unendlich viele Lösungen
 - $c \neq -5$: keine Lösung
- c) c = -2: keine Lösung
 - c = 2: unendlich viele Lösungen
 - $c \in \mathbb{R} \setminus \{-2; 2\}$: eine Lösung

4.

a) 1. Fall: a = 0unendlich viele Lösungen

z.B.
$$L = \{(x; y) | y = -\frac{1}{2}x + 1 \land x \in \mathbb{R} \}$$

2. Fall: $a \neq 0$

$$L = \{(2; 0)\}$$

b) 1. Fall: a = 1

Widerspruch

$$L = \emptyset$$

2. Fall: $a \neq 1$

$$L = \left\{ \left(\frac{1}{3a-3}; \frac{-5a+6}{3a-3} \right) \right\}$$

c) 1. Fall: a = 4

unendlich viele Lösungen

$$L = \left\{ (x_1; x_2; x_3) \mid x_1 = -2 + 3x_3 \land x_2 = 2 - \frac{1}{2} x_3 \land x_3 \in \mathbb{R} \right\}$$

2. Fall: $a \neq 4$

$$L = \{(-2; 1; 0)\}$$

d) $L = \{(1; -1 + 2a; 1 - 3a)\}$

e) 1. Fall:
$$a = 3$$
 Widerspruch $L = \emptyset$

$$L = \emptyset$$

2. Fall:
$$a \neq 3$$
 eine (von a abhängige) Lösung $L = \left\{ \left(\frac{5(a-4)}{4(a-3)}; \frac{-a}{8(a-3)}; \frac{1}{a-3} \right) \right\}$

f) 1. Fall:
$$a = 2$$

Unendlich viele Lösungen

$$L = \left\{ (x_1; x_2; x_3) \,\middle|\, x_1 = 3a - 4 - 4x_3 \land x_2 = 2 - a - \frac{3}{2}x_3 \land x_3 \in \mathbb{R} \right\}$$

2. Fall:
$$a \neq 2$$

Widerspruch

$$L = \emptyset$$

5.

1. Fall: $a \in \mathbb{R} \setminus \{0; 6\}$ genau eine Lösung

2. Fall: a = 0 keine Lösung

3. Fall: a = 6 unendlich viele Lösungen